class: center, middle, inverse, title-slide .title[ # Introduction to Spatial data with R ] .subtitle[ ## Serrapilheira/ICTP-SAIFR Training Program in Quantitative Biology and Ecology ] .author[ ### Andrea Sánchez-Tapia & Sara Mortara ] .date[ ### 26 July 2022 ] --- class: middle <img src="figs/ast2.png" width="1920" /> --- ## Introduction + __Geographic Information System (GIS)__ platforms. Powerful but point-and-click, some integrations. License needed! -- + __Free and open source software for geospatial (FOSS4G)__: R, Python, GRASS, QGIS -- + __Widely used__ external open source geo libraries written in C or C++: `GDAL`, `PROJ`, [`GEOS`](https://libgeos.org/)- Recent changes. -- + In R: supported for years, heterogeneous. Classic packages (`rgdal`, `rgeos` and `maptools`) will retire, lots of new packages (`stars`, `terra`, `leaflet`, `mapview`) -- + 📦 __Today (2022)__: `raster`, [`sf`](https://r-spatial.github.io/sf/), [`tmap`](https://github.com/mtennekes/tmap) --- class: inverse, middle, center ## Vectorial and raster data --- ## Vectorial data .pull-left[ <img src="figs/1_map.png" width="480" /> ] .pull-right[ - __points__: (x, y) pairs and multipoints (e.g. all cities in a country) - __lines__: several pairs (nodes), ordered. Polylines. Multiple (poly)lines (e.g.: a river and its tributaries, all the river systems in a region) - __polygons__: Ordered polylines, _ending at the starting point_. They can have __holes__, they do not cross themselves. Multiple polygons (e.g.:an archipelago) ] --- class: center ## Types of vectorial data <img src="figs/features.png" width="700" /> --- ## File types: shapefiles + Vector data are usually stored as __shapefile__ formats -- + Three files: `.shp`, `.shx`, `.dbf` and a projection `.prj` -- + Other extensions also refered to as shapefiles: Geopackages -- + In R: package `sf`. -- + `sf::read_sf()`, `sf::write_sf()` --- ## Raster data .pull-left[ ![](10_slides_files/figure-html/unnamed-chunk-4-1.png)<!-- --> ] .pull-right[ + __Continuous space__ divided in a cell grid + __One value per cell__: can be the average inside the cell, a sample in the center, the result of an operation including contiguous cells + __Spatial extent__, __resolution__ , (nrows, ncols, nlayers): 4716, 5388, 1 + A __stack__ of rasters, or __multiband__ rasters + In R: `raster`, several filetypes: `.asc`, `.grd`, `.tif` ] --- ## Where to find geospatial data? - __Direct download__ in official country organizations (ex. the shapefile for a protected area) -- - Spatial data __repositories__ (ex. Global Administrative Areas http://gadm.org, administrative information for all countries) -- - Remote sensing data: Satellite (ex. MODIS, Sentinel, Landsat) -- - Some R packages have map templates for quick mapping and options for downloading data (ex. `raster`) --- class: center, middle <img src="figs/rspatial.png" width="900" /> ### https://rspatialdata.github.io --- ## Coordinate reference systems, datums, projections + A __Coordinate Reference System__ is a standard to locate objects in the geographic space -- + The current default: __WGS84__ (World Geodetic System 1984). -- + Official CRS appropriate for regions and countries. Brazil: South America SAD69, Sirgass 2000, USA: NAD27, NAD83. --- ## CRS are composed by + A __spheroid__, a model of the shape of the Earth + A __datum__, a reference for the coordinates, their origin and unit of measurement + A __projection__, how to transform 3-D system to 2-D, Mercator, UTM, Robinson Lambert, Sinusoidal, Robinson, Albers + Lots of locally used CRS and one world standard: WGS84. Lots of deprecated/updated CRS. A repository with all the CRS: `https://spatialreference.org/` WGS: https://spatialreference.org/ref/epsg/4326/ --- ## CRS are key for correct spatial analysis + When downloading data from official sources, check the __metadata__ available + When missing, usually assume __WGS84__ but triple check with the data sources and see __what makes sense in your context__. You an assign a CRS to an object with a missing CRS ### Assigning a missing CRS does not make it correct and is not the same as re projecting --- ### This is only the beginning + Spatial statistics + Movement ecology + Epidemiology + Biogeography + Geostatistics --- ## Resources + Moraga, Paula. (2019). __Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny.__ Chapman & Hall/CRC Biostatistics Series https://www.paulamoraga.com/book-geospatial/ + __Spatial Data Science with R__ https://rspatial.org/ + __Leaflet tutorial__ https://rstudio.github.io/leaflet/ + Laurie Baker's tutorial with leaflet https://laurielbaker.github.io/DSCA_leaflet_mapping_in_r/slides/leaflet_slides2.html#66 + __Geocomputation with R__ https://geocompr.robinlovelace.net/ + RSpatial data: https://rspatialdata.github.io/ + Fortin MJ, Dale MRT 2005. Spatial Analysis: A guide for Ecologists, Third Edit. ed. New York. ❤️ --- class: center, middle # ¡Thanks! <center> <svg viewBox="0 0 512 512" style="position:relative;display:inline-block;top:.1em;fill:#A70000;height:1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"></path></svg> [andreasancheztapia@gmail.com](mailto:andreasancheztapia@gmail.com) | [saramortara@gmail.com](mailto:saramortara@gmail.com) <svg viewBox="0 0 512 512" style="position:relative;display:inline-block;top:.1em;fill:#A70000;height:1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"></path></svg> [@SanchezTapiaA](https://twitter.com/SanchezTapiaA) | [@MortaraSara](https://twitter.com/MortaraSara) <svg viewBox="0 0 496 512" style="position:relative;display:inline-block;top:.1em;fill:#A70000;height:1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"></path></svg><svg viewBox="0 0 512 512" style="position:relative;display:inline-block;top:.1em;fill:#A70000;height:1em;" xmlns="http://www.w3.org/2000/svg"> <path d="M105.2 24.9c-3.1-8.9-15.7-8.9-18.9 0L29.8 199.7h132c-.1 0-56.6-174.8-56.6-174.8zM.9 287.7c-2.6 8 .3 16.9 7.1 22l247.9 184-226.2-294zm160.8-88l94.3 294 94.3-294zm349.4 88l-28.8-88-226.3 294 247.9-184c6.9-5.1 9.7-14 7.2-22zM425.7 24.9c-3.1-8.9-15.7-8.9-18.9 0l-56.6 174.8h132z"></path></svg> [andreasancheztapia](http://github.com/andreasancheztapia) | [saramortara](http://github.com/saramortara)